Сантехника

Газовый конденсат: виды, свойства и переработка. Термин «конденсат стабильный Газовый конденсат и нефть отличие

Стабильный газовый конденсат

Углеводородная жидкость, состоящая из тяжёлых углеводородов С 5+ , в которой растворено не более 2-3% масс. пропан-бутановой фракции. Установлены две группы (I и II) стабильного конденсата в зависимости от содержания примесей - воды, механических примесей, хлористых солей .

В соответствии со стандартом ОСТ 51.65 - 80 стабильный конденсат определяется как смесь углеводородов метанового, нафтенового и ароматического рядов, удовлетворяющая требованиям по ряду физико-химических показателей. Основной показатель - давление насыщенных паров - при плюс 38є С должен составлять 66650 Па (500 мм рт. ст.). Таким образом, упругость паров стабильного конденсата должна быть такова, чтобы при нормальном атмосферном давлении обеспечивалось его хранение в жидком состоянии до температуры порядка плюс 60є С.

Свойства транспортируемого флюида

Свойства нефти, характеризующие возможность транспортировки по трубопроводу или перевозки в танкерных цистернах, зависят от её состава. Свойства нефти определяет количественное соотношение между парафиновыми, нафтеновыми, ароматическим углеводородами и другими компонентами. Эти свойства необходимо учитывать на всех этапах обращения с нефтью (и нефтепродуктами):

· при товарно-учётных операциях;

· при перекачке или при перевозке;

· при переработке и использовании в качестве топлива.

Плотность. Плотность обычно изменяется в пределах от 650 до 920 кг/м 3 . Используется также понятие относительной плотности, которая определяется отношением плотности жидких углеводородов к плотности воды при 20є С. Точное определение плотности жидких углеводородов имеет большое коммерческое значение, поскольку объёмы используемых резервуаров хорошо известны, и это позволяет точнее определять коммерческий вес перекачиваемого продукта .

Общее свойство плотностей жидких углеводородов - они уменьшаются с ростом температуры (1 нефтяной баррель = 42 галлона = 0,158988 м 3 = 159 л).

Из следующего графика следует (см. рис. 2.), что для рассмотренных нефтей при росте температуры на 100 гр. Цельсия их плотность уменьшается на 120-150 кг/м 3 , т.е. на 15-18%.

Рис. 2.

Коэффициент объёмного сжатия - величина, характеризующая изменение относительного объёма жидкости при изменении давления на единицу. Характерные значения этого коэффициента для нефти и конденсата находятся в интервале (5-15).10 - 4 1/МПа, т.е. эти продукты обладают малой сжимаемостью.

Столь большие значения коэффициента объёмного сжатия нефти и жидких углеводородов ответственны за сильные гидравлические удары в трубопроводах, возникающих при возникновении нестационарности при движении транспортируемого продукта.

Общая закономерность - коэффициент объёмного сжатия уменьшается по мере роста плотности жидкости .

Коэффициент объёмного расширения - величина, характеризующая относительное изменение объёма жидкости при изменении температуры на 1є С.

Особенно высоким коэффициентом объёмного расширения среди жидких углеводородов обладают сжиженные углеводородные газы. При одном и том же повышении температуры пропан (бутан) расширяется в 16,1 (11,2) раза больше, чем вода, и в 3,2 (2,2) раза больше, чем такой нефтепродукт, как керосин.

При повышении температуры СУГ, расширяясь, создают опасные напряжения в металле, которые могут привести к разрушению резервуаров. Это следует учитывать при заполнении последних, сохраняя требуемый для безопасной эксплуатации объем паровой фазы, т.е. необходимо предусматривать паровую "подушку". Для резервуаров, где проектный рост температуры хранящегося продукта не превышает 40° С, степень заполнения принимается равной 0,85, при большей проектной разности температур - степень заполнения принимается ещё меньше.

Подавляющая часть перекачиваемых в магистральных трубопроводах жидких углеводородов при условиях транспортировки относятся к т. н. ньютоновским жидкостям, основным свойством которых является способность к движению даже при приложения к ним минимального напряжения сдвига.

Обеспечивая перекачку жидкой углеводородной смеси в однофазном состоянии и с сохранением её "ньютоновских" свойств обеспечивается не только минимальные энергетические потери на её транспортировку, но и стабильные условия её перекачки.

Для этого при транспортировке жидких углеводородных смесей поддерживаются необходимые термобарические параметры, а сами жидкие смеси в случае необходимости соответствующим образом обрабатываются с целью достижения ими необходимых для трубопроводной транспортировки свойств .

Вязкость. От вязкости транспортируемого продукта зависит выбор технологии перекачки, энергозатраты на транспортировку жидких углеводородов и др. Особенностью вязкости как физического свойства жидкость является очень широкий спектр её значений для разных углеводородных жидких систем, а также её сильная зависимость от температуры транспортировки. Общее свойство вязкости жидких углеводородов - она уменьшается с ростом температуры.

В международной системе единиц СИ динамическая (молекулярная, сдвиговая) вязкость измеряется в пуазах (сантипуазах, сПз) или в мПа. с: вязкость жидких углеводородов изменяется в широком интервале - от 0,5 до 250 мПа. с.

Температура застывания - это такая температура, при достижении которой нефть (нефтепродукт) в пробирке не изменяет уровня при наклоне пробирки на 45є в течение 1 мин. Переход нефти из жидкого состояния в твёрдое происходит постепенно, в некотором интервале температур. С позиций физико-химической механики нефтяных дисперсных систем температура застывания нефти определяется как переход от свободно-дисперсного золя в связанно-дисперсное состояние (гель).

Температура нефти (жидкого углеводородного продукта), перекачиваемой по подводному трубопроводу, зависит (кроме температуры на входе в трубопровод) зависит от температуры придонного слоя морской воды в случае, когда трубопровод уложен на морское дно без заглубления, или от температуры грунта в случае, когда трубопровод находится в подводной траншее.

Температура перекачиваемой жидкости определяет величину вязкости и другие её реологические характеристики и таким образом влияет на режим перекачки; она определяет возможность застывания нефти (жидкого углеводородного продукта) в случае, если её температура достигает значения температуры застывания.

Поскольку обычно температура транспортируемого продукта понижается при его передвижении по трубопроводу, это может приводить к заметному росту его вязкости и коэффициента гидравлического сопротивления и, как следствие, к увеличению гидравлических потерь на трение, до тех пор, пока температура продукта падает. Иногда, это может привести к полной остановке трубопровода .

Если транспортируемая нефть относится к парафинистым или высокопарафинистым (неньютоновским для условий транспортировки) средам, подобные колебания загрузки осложняют эксплуатацию трубопроводов, особенно в случае морских месторождений и подводных трубопроводов. Транспорт продукции с низкой производительностью приводит к образованию застойных зон и накапливанию парафиноотложений (иногда, даже при использовании ингибиторов парафиноотложений) с постепенным повышением перепада давления в трубопроводе.

Главной причиной образования парафиновых отложений является температурный фактор - её уменьшение при транспортировке, а распределение парафиновых отложений в трубопроводе определяется особенностями его теплового режима.

На непротяжённых морских трубопроводах, чаще всего промысловых, иногда используется технология, основанная на использовании попутного подогрева продукта, который происходит из-за нагрева стенок труб.

Thorio пишет:

TaxHelp пишет:

Поднимаю старую тему. Высший арбитражный суд сейчас решает вопрос, что добывала одна из "дочек" ТНК нефть или конденсат (это влияет на налоги). Конечно, никто в суде заморачиваться с анализом с7 не будет. Решение будет в лучшем случае через полтора месяца. Если есть аккаунт на фейсбуке, то можете посмотреть видеозапись судебного заседания

Самый большой косяк ТНК, имхо, - бухгалтерский учёт: они всё проводили под нефтью.

Но поражает позиция налоговой инспекции. В 2х словах - они добытую нефть и конденсат смешивали и уже смесь отправляли на установку подготовки продукции. Вопрос к инспекции - производилось ли подготовка газового конденсата на установках подготовки продукции?, ответ - "нет".

Вот отжигАют налоговики! Я просто в "валялся" от смеха слушая речь налоговика. На вопрос "Поступал ли газовый конденсат на пункты приёма подготовки?" он ответил "На пункты приёма поступало только УГЛЕВОДОРОДНОЕ СЫРЬЁ, а газовый конденсат не пуступал!".... (Thorio, меня тоже это самое поразило)))

Такая безграмотность, глупость и тупость просто туши свет.

"Важный" аргумент налоговика - выходная продукция оценивалась по ГОСТ на товарную нефть, значит добывалась только нефть, а конденсата не было! "Не было мальчика, не было!!" "Не важно что на балансе стоят газовые залежи и из них идёт добыча конденсата! Поступало УВ сырьё, а на выходе получали НЕФТЬ, а значит плати бабки, капиталист-эксплуататор!!"

Маразм для умалишённых. Да кроме нефти нет ничего, и быть и не должно. И конденсат и нефть суть единая субстанция, варьирующая по свойствам. И, именно поэтому, нет никакого ГОСТ на конденсат, а есть ГОСТ на ТОВАРНУЮ нефть.

Государство опять наступает на свои грабли, которые стучат, к сожалению, не только по головам госорганов, показывая всю их некомпетентность, но и по головам недропользователей.

Неужели так трудно переписать несколько законов, и если уж так важно вести учёт продукции (а это действительно важно т.к. влияет на износ оборудования и др.), то вести учёт не по типу фазового состояния пластового флюида в пласте (железнодорожнику "по барабану" что там у недропользователя в пласте - жидкая нефть или пластовый газ из которого выпадает конденсат), а по характеристикам товарной продукции после подготовки и перед отправкой по ж/д или по трубе Транснефть - плотность, содержание серосодержащих, парафинов, фракционной разгонки и др. - именно эти характеристики важны для транспортника, и прописаны в ГОСТ на товарную нефть!

Пожалуйста, тогда, приезжай любой налоговик со своим аттестованным градусником, и мерий плотность, проверяй. Проверяй лаборатории выдавшие документ об анализе.

Беда только в том, что так уже будет не интересно. В мутной водичке рыба лучше клюёт! Глядишь в суде и "прокатит" - судьи же они не геологи, им трудно разобраться что есть конденсат, а что есть "нестабильный конденсат", могут поверить и тому что бутан, как отдельный компонент многокомпонентной системы, может отдельно разрабатываться из залежи (!) (ржу ни магу). А выручка в бюджет с "недобросовестного" предпринимателя - себе премия!

Государство сделало бардак в этом вопросе, а налоговый орган, как представитель этого государства, говорит "я вас за этот бардак буду иметь по полной программе".

Бесплатный цирк!

Печально всё это. Какая шарага...это гос....

P.S. похоже я знаю из какого региона ноги растут. Там самая "умная" налоговая сидит

Жаль ещё то, что недропользователь не всегда, на мой взгляд, чётко обрисовывает ситуацию. Я хоть и не юрист, но думаю смогу втолковать юристу чем отличается конденсат от нефти. Опыт уже имеется))

Было бы хорошей традицией приглашать на суд не только юристов но и специалистов высокого уровня, экспертов. И пусть они выступают со стороны суда, объясняя судьям суть вопроса. Тогда некоторым органам будет сложнее объясняться в суде.

Также компаниям недропользователям очень должно быть выгодно выходить с инициативой изменения законодательства в вопросах где есть бардак. Больше этим заниматься некому. Это обоёдётся дешевле, чем постоянные поборы налоговиков. Роснефть этим заниматься точно не будет, штраф для них - перекладывание денег из одного кармана в другой.Институтам "до ламочки" до таких проблем, да и в развале они, те кто ещё выжил. Остаётся только частным компаниям.

Жидкие смеси углеводородов (все они отличаются различным строением молекул и кипят при высокой температуре), которые выделяются в качестве побочного продукта на газоконденсатных, газовых и нефтяных месторождениях, объединяются общим названием — газовые конденсаты. Состав и количество их зависят от места и условий добычи, поэтому варьируются в широких пределах. Однако их можно разделить на два типа:

  • стабильный газовый конденсат в виде бензино-керосиновых фракций (а иногда и более высокомолекулярных жидких компонентов нефти),
  • нестабильный продукт, в состав которого, кроме углеводородов С5 и выше, входят газообразные углеводороды в виде метан-бутановой фракции.

Конденсат может поступать от трех типов скважин, где добывается:

  1. Сырая нефть (он идет в виде попутного газа, который может залегать под землей отдельно от сырой нефти (пластами) или быть растворенным в ней).
  2. Сухой природный газ (отличается низким содержанием растворенных в нем углеводородов, выход конденсата невысокий).
  3. Влажный природный газ (добывается на газоконденсатных месторождениях и отличается высоким содержанием бензинового конденсата).

Количество жидких компонентов в природных газах варьируется от 0,000010 до 0,000700 м³ на 1 м³ газа. Для примера, выход стабильного газового конденсата на различных месторождениях:

  • Вуктыльское (Республика Коми) — 352,7 г/м³;
  • Уренгойское (Западная Сибирь) — 264 г/м³;
  • Газлинское (Средняя Азия) — 17 г/м³;
  • Шебелинское (Украина) — 12 г/м³.

Природный газовый конденсат представляет собой многокомпонентную смесь различных жидких углеводородов с низкой плотностью, в которой присутствуют газообразные компоненты. Он конденсируется из сырого газа во время понижения температуры при (ниже точки росы добываемых углеводородов). Его часто называют просто "конденсат" или "газовый бензин".

Схемы отделения конденсата от природного газа или нефти разнообразны и зависят от месторождения и назначения продуктов. Как правило, на технологической установке, сооруженной рядом с газовым или газоконденсатным месторождением, добытый газ готовят к транспортировке: отделяют воду, очищают до определенного предела от сернистых соединений, транспортируют потребителю углеводороды С1 и С2, небольшую их долю (от добытого) закачивают в пласты для поддержания давления. Выделенная фракция (после удаления из нее компонентов С3, но с небольшим их содержанием) и есть тот газовый конденсат, который направляется в виде сырьевого потока на нефтеперерабатывающие заводы или на установки нефтехимического синтеза. Транспортировка осуществляется по трубопроводу или наливным транспортом.

Газовый конденсат на используется как сырье для производства бензина с невысоким октановым числом, для повышения которого применяются антидетонационные добавки. Кроме того, продукт характеризуется высокой температурой помутнения и застывания, поэтому его используют для получения летнего топлива. В качестве газовый конденсат применяются реже, так как требуется дополнительная депарафинизация. Это направление использует меньше трети добытых конденсатов.

Наиболее интересным технологическим решением является использование такого продукта, как широкая фракция легких углеводородов для нефтехимического синтеза. С ее получения начинается переработка газового конденсата. Более глубокие процессы продолжаются на установках пиролиза, где ШФЛУ применяется в качестве сырья для получения таких важных мономеров, как этилен, пропилен и много других сопутствующих им продуктов. Затем этилен направляется на установки полимеризации, из него получают полиэтилен различных марок. В результате получается полипропилен. Бутилен-бутадиеновая фракция используется для изготовления каучука. Углеводороды С6 и выше являются сырьем для производства нефтехимического синтеза (получают бензол), и только фракция С5, являющаяся сырьем для получения ценнейших продуктов, используется пока неэффективно.

Термин «конденсат стабильный»

Конденсат стабильный – представляет собой жидкую смесь углеводородов по формуле С15 Н12 и выше, которые в молекуле имеют более трех, четырех атомов углерода. Количество атомов углерода зависит от спецификации. Стабильный конденсат – жидкость, не имеющая цвета или слабоокрашенная, относительная плотность составляет от 0,72 до 0,78. Это горючий продукт, который относится к опасным веществам по своим токсикологическим свойствам. При соединении с воздухом пары конденсата образуют взрывоопасную смесь.

Получают стабильный конденсат из продукта, который выделяет природный газ. Существует такое понятие, как нестабильный газовый конденсат, который получают при конденсации в условиях уменьшения давления или температуры природного газа. Для транспортировки газового конденсата на переработку с применением наливного транспорта, требуется удаление из него летучих фракций путем ректификации или содержании в течение определенного времени в условиях атмосферного давления и повышенной температуры. Именно после удаления летучих фракций и получается стабильный газовый конденсат. Степень удаления летучих фракций подвергается проверки и определяется из ТУ на давление паров по Рейду для различных емкостей (цистерн, хранилищ). Так, по рекомендациям разработанным Американским нефтяным институтом, для рыночного сырья этот показатель при температуре 15 градусов по Цельсию не должен быть более 69 кПа. Такое значение показателя связано с избыточным давлением в вертикальных хранилищах. Возможно и большее значение показателя давления паров по Рейду, но это приведет к испарению сырья в ходе его хранения из дыхательных клапанов, которыми снабжаются все резервуары.

В природе газовый конденсат в большинстве случаев находится в газообразном состоянии в составе несколько более легких углеводородных газов. Если происходит падение давления, температуры, ниже определенной величины, так называемой критической величины, наступает процесс обратной его конденсации. Обратная конденсация останавливает процесс извлечения конденсата наружу, что объясняется более высокой проницаемостью пород по газу, чем по жидким углеводородам. Но одновременно, накопленный в породах конденсат ухудшает их проницаемость по газу. Чтобы избежать обратной конденсации и потерь конденсата в ходе этого процесса в пласте повышают внутреннее давление и проницаемость по газу и жидким углеводородам. Существует сайклинг-процесс, который состоит в том, что закачивается частично отбензиненный газ в пласт с целью поддержания внутрипластового давления выше максимального давления, при котором любая из фаз многокомпонентной системы будет находиться в состоянии равновесия.

Стабильный газовый конденсат применяют для получения моторных топлив, а также в химической промышленности.

Стабильный конденсат бывает двух видов – тёмный и светлый. Это зависит от таких факторов: откуда был извлечен, с какой глубины происходило извлечение. Именно из-за различия этих факторов цвет меняется в зависимости от содержания примесей – от коричневого и до светло-жёлтого.

Учитывая, что стабильный конденсат является достаточно опасным продуктом, при взаимодействии с ним четко должны соблюдаться требования безопасности. Так, рабочие, осуществляющие его набор, слив в обязательном порядке должны быть в средствах индивидуальной защиты. Все оборудование для стабильного конденсата должно быть проверено на герметичность. При загорании небольших объемов для тушения используют пенные огнетушители, песок. В случае более масштабных возгораний применяют механическую или химическую пену, а также воду.

Компании, в новостях которых есть конденсат стабильный:

Пластовая продукция ряда месторождений наряду с газооб­разными компонентами содержит также пентан и более тяже­лые углеводороды (С 5+). По форме статической отчетности 34 ТП углеводороды С 5+ принято называть газовым конденса­том. На практике пользуются также термином стабильный конденсат. Этот продукт наряду с углеводородом С 5 + содер­жит также пропан, бутан и другие соединения. Стабильные конденсаты отвечают требованиям ГОСТ 51.60-80.

Одни конденсаты обладают ярко выраженным метановым характером (Марковское), в других преобладают нафтеновые углеводороды (Устье-Чесальское, Бованенковское). В некото­рых конденсатах содержатся в значительном количестве аро­матические углеводороды. К примеру, в конденсатах Митрофановского, Некрасовского, Кульбешкакского, Усть-Лабинского месторождений их количество составляет 46-63%.

Стабильный конденсат одного и того же месторождения мо­жет иметь различные показатели. Это зависит, с одной сторо­ны, от снижения пластового давления месторождения, с дру­гой - от режима эксплуатации установок, где производится выделение тяжелых углеводородов из газа. Так, снижение изо­термы на установках НТС повышает степень конденсации уг­леводородов gs, С 6 , что в свою очередь приводит к увеличению содержания легких фракций в конденсате. Особенно сущест­венно влияние температуры сепарации на фракционный состав конденсата при его незначительном содержании в пластовом газе и высоком содержании высококипящих фракций.

Физико-химические характеристики конденсатов определяют их товарные свойства.

Для оценки возможности получения из конденсатов отдель­ных марок моторных топлив установлена их единая техноло­гическая классификация по отраслевому стандарту ОСТ 51.56-79 . Согласно этой классификации конденсаты ана­лизируются по следующим показателям: давление насыщен­ных паров, содержание серы, фракционный состав, содержа­ние ароматических углеводородов и парафинов, температура застывания.

I - бессернистые и малосернистые с массовой долей общей серы не более 0,05%. Эти конденсаты не нуждаютса в очистке от сернистых соединений;

II - сернистые с содержанием общей серы от 0,05 до 0,8%. Необходимость очистки конденсатов этого класса и его дистиллятных фракций в каждом конкретном случае решается в за­висимости от исходных требований;

III - высокосернистые с содержанием общей серы выше 0,80%. Включение узла очистки от сернистых соединений в схемы переработки этих конденсатов обязательно.

По массовой доле ароматических углеводородов в газовых конденсатах они разделяются на три типа: А 1 , А 2 и А 3. К ти­пам А 1 , А 2 и А 3 относятся конденсаты, содержащие более 20, 15-20 и менее 15% ароматических углеводородов соответст­венно.


H 1 - высокопарафинистые, во фракции которых с темпера­турой кипения 200-320°С содержание комплексообразующих составляет не менее 25% (масс.). Из этих конденсатов можно получить жидкие, н-алканы и реактивное и дизельное топливо с использованием процесса депарафинизации;

Н 2 - парафинистые, во фракции 200-320°С содержится 18-25% (масс.) комплексообразующих;

Н 3 - малопарафинистые, содержание комплексообразующих во фракции 200-320 °С - 12-18% (масс.);

Н 4 - беcпарафинистые, содержание в дизельной фракции комплексообразующих - менее 12% (масс.).

По фракционному составу конденсаты подразделены на три группы - Ф 1 Ф 2 и Ф 3:

Ф 1 - конденсаты облегченного фракционного состава, содер­жащие бензиновые фракции не менее 80% (масс.), выкипающие не выше 250 °С;

Ф 2 - конденсаты промежуточного фракционного состава, выкипающие в пределах температур 250-320 °С;

Ф 3 - конденсаты выкипающие выше 320°С.

Таким образом, для газового конденсата устанавливается шифр технологической характеристики, по которому определя­ется целесообразное направление его переработки. К приме­ру, конденсат Шатлыкского месторождения обозначается шиф­ром IА 3 Н 1 Ф 3 . Входящие в него символы расшифровываются следующим образом:

I - класс: содержание общей серы в конденсате составля­ет не более 0,05% (масс.); А 3 -тип конденсата: содержание ароматических углеводородов менее 15% (масс.);Н 1 -вид: высокопарафинистый конденсат, во фракции 200-320 °С содержание комплексообразующих выше 25% (масс.); Ф 3 - тем­пература конца кипения выше 320 °С.

где ,gi - массовое содержание сернистых соединений в стабильном конден­сате, %; M i -молярная масса сернистых соединений; т - число атомов се­ры в веществе.