Ремонт

Потеря хромосомы. Нарушение генетической программы клетки и механизмов ее реализации

Большая часть сведений о хромосомных перестройках , вызывающих фенотипические или телесные изменения и аномалии, была получена в результате исследований генотипа (расположения генов в хромосомах слюнных желез) обыкновенной плодовой мушки. Несмотря на то, что многие болезни человека имеют наследственную природу, лишь в отношении их небольшой части достоверно известно, что они вызваны хромосомными аномалиями. Только из наблюдений за фенотипическими проявлениями мы можем заключить, что произошли те или иные изменения генов и хромосом.

Хромосомы это организованные в виде двойной спирали молекулы дезоксирибонуклеиновой кислоты (ДНК), образующей химическую основу наследственности. Специалисты считают, что хромосомные нарушения возникают в результате перестройки порядка расположения или числа генов в хромосомах. Гены представляют собой группы атомов, входящих в состав молекул ДНК. Как известно, молекулы ДНК определяют характер молекул рибонуклеиновой кислоты (РНК), которые выполняют функцию «доставщиков» генетической информации, определяющей структуру и функцию органических тканей.

Первичная генетическая субстанция, ДНК, действует через посредство цитоплазмы, выполняющей функцию катализатора в изменении свойств клеток, формируя кожу и мышцы, нервы и кровеносные сосуды, кости и соединительную ткань, а также другие специализированные клетки, но не допуская изменений самих генов в ходе этого процесса. Почти на всех этапах строительства организма занято множество генов, и потому совсем не обязательно, чтобы каждый физический признак являлся результатом действия одного гена.

Хромосомное нарушение

Разнообразные хромосомные нарушения могут быть результатом следующих структурных и количественных нарушений:

    Разрыв хромосом. Хромосомные перестройки могут вызываться под воздействием рентгеновских лучей, ионизирующей радиации, возможно, космических лучей, а также многих других, пока неизвестных нам, биохимических или средовых факторов.

    Рентгеновские лучи. Могут вызвать разрыв хромосомы; в процессе перестройки сегмент или сегменты, оторвавшиеся от одной хромосомы, могут быть утеряны, в результате чего возникает мутация или фенотипическое изменение. Становится возможной экспрессия рецессивного гена, обусловливающего определенный дефект или аномалию, поскольку нормальный аллель (парный ген в гомологичной хромосоме) утерян и вследствие этого не может нейтрализовать воздействие дефектного гена.

    Кроссовер. Пары гомологичных хромосом закручены в спираль подобно дождевым червям во время спаривания и могут разрываться в любых гомологичных точках (т. е. на одном уровне образующих пару хромосом). В процессе мейоза происходит разделение каждой пары хромосом таким образом, что только одна хромосома из каждой пары входит в образовавшуюся яйцеклетку или спермий. Когда происходит разрыв, конец одной хромосомы может соединяется с оторвавшимся концом другой хромосомы, а два оставшихся куска хромосом связываются вместе. В результате образуются две совершенно новые и разные хромосомы. Этот процесс называют кроссинговером.

    Дупликация/нехватка генов. При дупликации участок одной хромосомы отрывается и прикрепляется к гомологичной хромосоме, удваивая уже существующую в ней группу генов. Приобретение хромосомой дополнительной группы генов обычно наносит меньший вред, чем утрата генов др. хромосомой. К тому же при благоприятном исходе дупликации ведут к образованию новой наследственной комбинации. Хромосомы с потерянным терминальным участком (и нехваткой локализованных в нем генов) могут приводить к мутациям или фенотипическим изменениям.

    Транслокация. Сегменты одной хромосомы переносятся на другую, негомологичную ей хромосому, вызывая стерильность особи. В этом случае любое негативное фенотипическое проявление не может быть передано последующим поколениям.

    Инверсия. Хромосома разрывается в двух и более местах, и ее сегменты инвертируются (поворачиваются на 180°) перед тем, как соединиться в том же порядке в целую реконструированную хромосому. Это самый распространенный и самый важный способ перегруппировки генов в эволюции видов. Однако новый гибрид может стать изолянтом, поскольку обнаруживает стерильность при скрещивании с первоначальной формой.

    Эффект положения. В случаях изменения положения гена в той же хромосоме у организмов могут обнаруживаться фенотипические изменения.

    Полиплоидия. Сбои в процессе мейоза (хромосомного редукционного деления в ходе подготовки к репродукции), которые затем обнаружатся в зародышевой клетке, могут удваивать нормальное число хромосом в гаметах (сперматозоидах или яйцеклетках).

Полиплоидные клетки присутствуют в нашей печени и некоторых других органах, обычно не нанося сколько-нибудь заметного вреда. Когда же полиплоидия проявляется в наличии одной-единственной «лишней» хромосомы, то появление последней в генотипе может привести к серьезным фенотипическим изменениям. К их числу относится синдром Дауна , при котором в каждой клетке содержится дополнительная 21-я хромосома.

Среди больных с сахарным диабетом встречается незначительный процент рождений с осложнениями, при которых эта дополнительная аутосома (неполовая хромосома) становится причиной недостаточного веса и роста новорожденного и задержки последующего физического и умственного развития. Люди страдающие синдромом Дауна имеют 47 хромосом. Причем дополнительная 47-я хромосома обусловливает у них избыточный синтез фермента, разрушающего незаменимую аминокислоту триптофан, которая встречается в молоке и необходима для нормального функционирования клеток мозга и регуляции сна. Лишь у незначительного процента родившихся с синдромом эта болезнь определенно носит наследственный характер.

Диагностика хромосомных нарушений

Врожденные пороки развития представляют стойкие структурные или морфологические дефекты органа или его части, возникающие внутриутробно и нарушающие функции пораженного органа. Могут возникнуть крупные пороки, которые приводят к значительным медицинским, социальным или косметическим проблемам (спинно-мозговые грыжи, расщелины губы и нёба) и малые, которые представляют собой небольшие отклонения в строении органа, не сопровождающиеся нарушением его функции (эпикант, короткая уздечка языка, деформация ушной раковины, добавочная доля непарной вены).

Хромосомные нарушения имеют деление на:

    Тяжелые (требуют срочного медицинского вмешательства);

    умеренно тяжелые (требуют лечения, но не угрожают жизни пациента).

Врожденные пороки развития представляют собой многочисленную и очень разнообразную группу состояний, наиболее распространенные и представляющие большее значение из них, это:

    анэнцефалия (отсутствие большого мозга, частичное или полное отсутствие костей свода черепа);

    черепно-мозговая грыжа (выпячивание головного мозга через дефект костей черепа);

    спинно-мозговая грыжа (выпячивание спинного мозга через дефект позвоночника);

    врожденная гидроцефалия (избыточное накопление жидкости внутри желудочковой системы мозга);

    расщелины губы с расщелиной (или без неё) нёба;

    анофтальмия/микрофтальмия (отсутствие или недоразвитие глаза);

    транспозиция магистральных сосудов;

    пороки развития сердца;

    атрезия/стеноз пищевода (отсутствие непрерывности или сужение пищевода);

    атрезия ануса (отсутствие непрерывности аноректального канала);

    гипоплазия почек;

    экстрофия мочевого пузыря;

    диафрагмальные грыжи (выпячивание органов брюшной полости в грудную через дефект в диафрагме);

    редукционные пороки конечностей (тотальное или частичное конечностей).

Характерными признаками врожденных аномалий являются:

    Врожденный характер (симптомы и признаки, которые были с рождения);

    однотипность клинических проявлений у нескольких членов семьи;
    длительное сохранение симптомов;

    наличие необычных симптомов (множественные переломы, подвывих хрусталика и другие);

    множественность поражений органов и систем организма;

    невосприимчивость к лечению.

Для диагностики врожденных пороков развития используются различные методы. Распознавание внешних пороков развития (расщелины губы, нёба) основывается на клиническом осмотре больного , который здесь является основным, и, обычно, не вызывает затруднения.

Пороки развития внутренних органов (сердца, легких, почек и других) требуют дополнительные методы исследования, так как специфических симптомов для них нет, жалобы могут быть точно такими же, как и при обычных заболеваниях этих систем и органов.

К этим методам относятся все обычные методы, которые используются и для диагностики неврожденной патологии:

    лучевые методы (рентгенография, компьютерная томография, магнитно-резонансная томография, магнитно-резонансная томография, ультразвуковая диагностика);

    эндоскопические (бронхоскопия, фиброгастродуоденоскопия, колоноскопия).

Для диагностики пороков используют генетические методы исследования: цитогенетические, молекулярно-генетические, биохимические.

В настоящее время врожденные пороки можно выявлять не только после рождения, но и во время беременности. Главным является ультразвуковое исследование плода, с помощью которого диагностируются как внешние пороки, так и пороки внутренних органов. Из других методов диагностики пороков во время беременности применяют биопсию ворсин хориона, амниоцентез, кордоцентез, полученный материал подвергают цитогенетическому и биохимическому исследованию.

Хромосомные нарушения классифицируются по принципы линейной последовательности расположения генов и бывают в виде делеции (нехватка), дупликации (удвоение), инверсии (перевертывание), инсерции (вставка) и транслокации (перемещение) хромосом. В настоящее время известно, что практически все хромосомные нарушения сопровождаются задержкой развития (психомоторного, умственного, физического), кроме того они могут сопровождаться наличием врожденных пороков развития.

Эти изменения характерны для аномалий аутосом (1 - 22 пары хромосом), реже для гоносом (половых хромосом, 23 пара). На первом году жизни ребенка можно диагностировать многие из них. Основные их них это, синдром кошачьего крика, синдром Вольфа-Хиршхорна, синдром Патау, синдром Эдвардса, синдром Дауна, синдром кошачьего глаза, синдром Шерешевского-Тернера, синдром Клайнфелтера.

Раньше диагностика хромосомных болезней основывалась на использовании традиционных методов цитогенетического анализа, этот тип диагностики позволял судить о кариотипе - числе и структуре хромосом человека. При этом исследовании оставались нераспознанными некоторые хромосомные нарушения. В настоящее время разработаны принципиально новые методы диагностики хромосомных нарушений. К ним относятся: хромосомоспецифичные пробы ДНК, модифицированный метод гибридизации.

Профилактика хромосомных нарушений

В настоящее время профилактика этих заболеваний представляет собой систему мероприятий разного уровня, которые направлены на снижение частоты рождения детей с данной патологией.

Имеется три профилактических уровня , а именно:

Первичный уровень: проводятся до зачатия ребенка и направлены на устранение причин, которые могут вызвать врожденные пороки или хромосомные нарушения, или факторов риска. К мероприятиям этого уровня относится комплекс мер, направленных на защиту человека от действия вредных факторов, улучшение состояния окружающей среды, проверка на мутагенность и тератогенность продуктов питания, пищевых добавок, лекарственных препаратов, охрана труда женщин на вредных производствах и тому подобное. После того, как была выявлена связь развития некоторых пороков с дефицитом фолиевой кислоты в организме женщины, было предложено употреблять её в качестве профилактического средства всеми женщинами репродуктивного возраста за 2 месяца до зачатия и в течение 2 - 3 месяцев после зачатия. Также к профилактическим мероприятиям относится вакцинация женщин против краснухи.

Вторичная профилактика: направлена на выявление пораженного плода с последующим прерыванием беременности или при возможности проведением лечения плода. Вторичная профилактика может носить массовый характер (ультразвуковое обследование беременных) и индивидуальный (медико-генетическое консультирование семей с риском рождения больного ребенка, на котором устанавливают точный диагноз наследственного заболевания, определяют тип наследования заболевания в семье, расчет риска повторения болезни в семье, определение наиболее эффективного способа семейной профилактики).

Третичный уровень профилактики: подразумевает проведение лечебных мероприятий, направленных на устранение последствий порока развития и его осложнений. Пациенты с серьезными врожденными аномалиями вынуждены наблюдаться у врача всю жизнь.

Хромосомные мутации (по-другому их называют аберрациями, перестройками) - это непредсказуемые изменения в структуре хромосом. Чаще всего они вызываются проблемами, возникающими в процессе деления клетки. Воздействие инициирующих факторов среды - это еще одна возможная причина хромосомных мутаций. Давайте же разберемся, какими могут быть проявления такого рода изменений в структуре хромосом и какие последствия они несут для клетки и всего организма.

Мутации. Общие положения

В биологии мутация определяется как стойкое изменение структуры генетического материала. Что значит «стойкое»? Оно передается по наследству потомкам организма, имеющего мутантную ДНК. Происходит это следующим образом. Одна клетка получает неправильную ДНК. Она делится, а две дочерние копируют ее строение полностью, то есть они тоже содержат измененный генетический материал. Далее таких клеток становится все больше, и, если организм переходит к размножению, его потомки получают сходный мутантный генотип.

Мутации обычно не проходят бесследно. Некоторые из них меняют организм настолько, что результатом этих изменений становится летальный исход. Часть из них заставляет организм функционировать по-новому, снижая его способности к адаптации и приводя к серьезным патологиям. И очень малое количество мутаций приносит организму пользу, повышая тем самым его способность адаптироваться к условиям окружающей среды.

Выделяют мутации генные, хромосомные и геномные. Такая классификация основывается на различиях, происходящих в разных структурах генетического материала. Хромосомные мутации, таким образом, затрагивают строение хромосом, генные - последовательность нуклеотидов в генах, а геномные вносят изменения в геном всего организма, прибавляя или отнимая целый набор хромосом.

Поговорим о хромосомных мутациях более подробно.

Какими могут быть хромосомные перестройки?

В зависимости от того, как локализованы происходящие изменения, различают следующие типы хромосомных мутаций.

  1. Внутрихромосомные - преобразование генетического материала в пределах одной хромосомы.
  2. Межхромосомные - перестройки, в результате которых две негомологичные хромосомы обмениваются своими участками. Негомологичные хромосомы содержат разные гены и не встречаются в процессе мейоза.

Каждому из этих типов аберраций соответствуют некоторые виды хромосомных мутаций.

Делеции

Делеция - это отделение или выпадение какого-либо участка хромосомы. Несложно догадаться, что этот тип мутации относится к внутрихромосомным.

Если отделяется крайний участок хромосомы, то делеция называется концевой. Если же происходит выпадение генетического материала ближе к центру хромосомы, такая делеция именуется интерстициальной.

Этот тип мутаций может оказывать влияние на жизнеспособность организма. К примеру, выпадение участка хромосомы, кодирующего определенный ген, обеспечивает человеку невосприимчивость к вирусу иммунодефицита. Эта адаптационная мутация возникла примерно 2000 лет назад и некоторым людям, заболевшим СПИДом, удалось выжить только благодаря тому, что им повезло иметь хромосомы с измененной структурой.

Дупликации

Еще один вид внутрихромосомных мутаций - дупликации. Это копирование участка хромосомы, которое происходит вследствие ошибки при так называемом перекресте, или кроссинговере в процессе деления клетки.

Скопированный таким образом участок может сохранять свое положение, поворачиваться на 180°, или даже повторяться несколько раз, и тогда такая мутация называется амплификацией.

У растений количество генетического материала может увеличиваться именно путем многократных дупликаций. В таком случае обычно меняются способности целого вида к адаптации, а это значит, что такие мутации имеют большое эволюционное значение.

Инверсии

Также относятся к внутрихромосомным мутациям. Инверсия - это поворот определенного участка хромосомы на 180°.

Перевернутая в результате инверсии часть хромосомы может находиться по одну сторону от центромеры (парацентрическая инверсия) или по разные ее стороны (перицентрическая). Центромера - это так называемая область первичной перетяжки хромосомы.

Обычно инверсии не оказывают влияния на внешние признаки организма и не приводят к патологиям. Существует, однако, предположение, что у женщин с инверсией определенного участка девятой хромосомы вероятность выкидыша при беременности возрастает на 30 %.

Транслокации

Транслокация - это перемещение участка одной хромосомы на другую. Эти мутации относятся к типу межхромосомных. Выделяют два вида транслокаций.

  1. Реципрокные - это обмен двух хромосом определенными участками.
  2. Робертсоновские - слияние двух хромосом с коротким плечом (акроцентрических). В процессе робертсоновской транслокации короткие участки обеих хромосом утрачиваются.

Реципрокные транслокации приводят у людей к проблемам с деторождением. Иногда такие мутации становятся причиной невынашивания беременности или ведут к появлению на свет детей с врожденными патологиями развития.

Робертсоновские транслокации достаточно часто встречаются у человека. В частности, если транслокация происходит с участием хромосомы 21, у плода развивается синдром Дауна, одна из самых часто регистрируемых врожденных патологий.

Изохромосомы

Изохромосомы - это хромосомы, потерявшие одно плечо, но при этом заменившие его на точную копию другого своего плеча. То есть по сути такой процесс можно считать делецией и инверсией в одном флаконе. В очень редких случаях такие хромосомы имеют две центромеры.

Изохромосомы присутствуют в генотипе женщин, страдающих синдромом Шерешевского - Тернера.

Все описанные выше виды хромосомных мутаций присущи различным живым организмам, в том числе и человеку. Как же они проявляются?

Хромосомные мутации. Примеры

Мутации могут происходить в половых хромосомах и в аутосомах (всех остальных парных хромосомах клетки). Если мутагенез затрагивает половые хромосомы, последствия для организма, как правило, оказываются тяжелыми. Возникают врожденные патологии, которые затрагивают умственное развитие индивида и обычно выражаются в изменениях фенотипа. То есть внешне мутантные организмы отличаются от нормальных.

Геномные и хромосомные мутации чаще возникают у растений. Однако встречаются они и у животных, и у человека. Хромосомные мутации, примеры которых мы рассмотрим ниже, проявляются в возникновении тяжелых наследственных патологий. Это синдром Вольфа-Хиршхорна, синдром «кошачьего крика», болезнь частичной трисомии по короткому плечу хромосомы 9, а также некоторые другие.

Синдром «кошачьего крика»

Это заболевание было открыто в 1963 году. Возникает оно из-за частичной моносомии по короткому плечу хромосомы 5, обусловленной делецией. Один из 45 000 детей рождается с этим синдромом.

Почему это заболевание получило такое название? Дети, страдающие этой болезнью, имеют характерный плач, который напоминает кошачье мяуканье.

При делеции короткого плеча пятой хромосомы могут утрачиваться разные его участки. Клинические проявления заболевания напрямую зависят от того, какие гены были утеряны в ходе этой мутации.

Строение гортани изменяется у всех больных, а значит «кошачий крик» характерен всем без исключения. У большей части страдающих этим синдромом отмечается изменение строения черепа: уменьшение мозгового отдела, лунообразная форма лица. Ушные раковины при синдроме «кошачьего крика» обычно расположены низко. Иногда у больных отмечаются врожденные патологии сердца или других органов. Характерным признаком также становится умственная отсталость.

Обычно больные с этим синдромом умирают в раннем детстве, лишь 10% из них доживает до десятилетнего возраста. Однако зафиксированы и случаи долгожительства при синдроме "кошачьего крика" - до 50 лет.

Синдром Вольфа-Хиршхорна

Этот синдром встречается значительно реже - 1 случай на 100 000 рождений. Обусловлен он делецией одного из сегментов короткого плеча четвертой хромосомы.

Проявления этого заболевания разнообразны: задержка развития физической и психической сферы, микроцефалия, характерная клювовидная форма носа, косоглазие, расщелины неба или верхней губы, маленький рот, пороки внутренних органов.

Как и многие другие хромосомные мутации человека, болезнь Вольфа-Хиршхорна относится к категории полулетальных. Это значит, что жизнеспособность организма при такой болезни существенно снижена. Дети с диагностированным синдромом Вольфа-Хиршхорна обычно не доживают до 1 года, однако зафиксирован один случай, когда больной прожил 26 лет.

Синдром частичной трисомии по короткому плечу хромосомы 9

Возникает это заболевание по причине несбалансированных дупликаций в девятой хромосоме, в результате чего генетического материала в этой хромосоме становится больше. Всего известно более 200 случаев таких мутаций у человека.

Клиническая картина описывается задержкой физического развития, легкой умственной отсталостью, характерным выражением лица. Пороки сердца обнаруживаются у четвертой части всех больных.

При синдроме частичной трисомии короткого плеча хромосомы 9 прогноз все же относительно благоприятный: большая часть больных доживают до пожилого возраста.

Другие синдромы

Иногда даже на очень маленьких участках ДНК происходят хромосомные мутации. Болезни в таких случаях обычно обусловлены дупликациями или делециями, и их называют соответственно микродупликационными или микроделеционными.

Самым распространенным таким синдромом считается болезнь Прадера-Вилли. Возникает она из-за микроделеции участка хромосомы 15. Что интересно, эта хромосома должна быть обязательно получена организмом от отца. В результате микроделеции затронутыми оказываются 12 генов. У больных с этим синдромом отмечаются умственная отсталость, ожирение, а также у них обычно маленькие стопы и кисти рук.

Еще одним примером таких хромосомных болезней может служить синдром Сотоса. Происходит микроделеция на участке длинного плеча хромосомы 5. Клиническая картина этого наследственного заболевания характеризуется быстрым ростом, увеличением в размерах кистей рук и стоп, наличием выпуклого лба, некоторой задержкой психического развития. Частота встречаемости этого синдрома не установлена.

Хромосомные мутации, точнее, микроделеции на участках 13 и 15 хромосом, вызывают соответственно опухоль Вильмса и ретинбластому. Опухоль Вильмса - это рак почек, который возникает преимущественно у детей. Ретинобластома - это злокачественная опухоль сетчатки, которая также встречается у детей. Эти заболевания лечатся, если диагностика их проведена на ранних стадиях. В некоторых случаях врачи прибегают к оеративному вмешательству.

Современная медицина избавляет от многих болезней, но вылечить или хотя бы предотвратить хромосомные мутации пока нельзя. Их можно только выявить в начале внутриутробного развития плода. Однако генная инженерия не стоит на месте. Быть может, в скором времени способ предотвращения болезней, вызываемых хромосомными мутациями, будет найден.

Хромосомные мутации (по-другому их называют аберрациями, перестройками) - это непредсказуемые изменения в структуре хромосом. Чаще всего они вызываются проблемами, возникающими в процессе деления клетки. Воздействие инициирующих факторов среды - это еще одна возможная причина хромосомных мутаций. Давайте же разберемся, какими могут быть проявления такого рода изменений в структуре хромосом и какие последствия они несут для клетки и всего организма.

Мутации. Общие положения

В биологии мутация определяется как стойкое изменение структуры генетического материала. Что значит «стойкое»? Оно передается по наследству потомкам организма, имеющего мутантную ДНК. Происходит это следующим образом. Одна клетка получает неправильную ДНК. Она делится, а две дочерние копируют ее строение полностью, то есть они тоже содержат измененный генетический материал. Далее таких клеток становится все больше, и, если организм переходит к размножению, его потомки получают сходный мутантный генотип.

Мутации обычно не проходят бесследно. Некоторые из них меняют организм настолько, что результатом этих изменений становится летальный исход. Часть из них заставляет организм функционировать по-новому, снижая его способности к адаптации и приводя к серьезным патологиям. И очень малое количество мутаций приносит организму пользу, повышая тем самым его способность адаптироваться к условиям окружающей среды.

Выделяют мутации генные, хромосомные и геномные. Такая классификация основывается на различиях, происходящих в разных структурах генетического материала. Хромосомные мутации, таким образом, затрагивают строение хромосом, генные - последовательность нуклеотидов в генах, а геномные вносят изменения в геном всего организма, прибавляя или отнимая целый набор хромосом.

Поговорим о хромосомных мутациях более подробно.

Какими могут быть хромосомные перестройки?

В зависимости от того, как локализованы происходящие изменения, различают следующие типы хромосомных мутаций.

  1. Внутрихромосомные - преобразование генетического материала в пределах одной хромосомы.
  2. Межхромосомные - перестройки, в результате которых две негомологичные хромосомы обмениваются своими участками. Негомологичные хромосомы содержат разные гены и не встречаются в процессе мейоза.

Каждому из этих типов аберраций соответствуют некоторые виды хромосомных мутаций.

Делеции

Делеция - это отделение или выпадение какого-либо участка хромосомы. Несложно догадаться, что этот тип мутации относится к внутрихромосомным.

Если отделяется крайний участок хромосомы, то делеция называется концевой. Если же происходит выпадение генетического материала ближе к центру хромосомы, такая делеция именуется интерстициальной.

Этот тип мутаций может оказывать влияние на жизнеспособность организма. К примеру, выпадение участка хромосомы, кодирующего определенный ген, обеспечивает человеку невосприимчивость к вирусу иммунодефицита. Эта адаптационная мутация возникла примерно 2000 лет назад и некоторым людям, заболевшим СПИДом, удалось выжить только благодаря тому, что им повезло иметь хромосомы с измененной структурой.

Дупликации

Еще один вид внутрихромосомных мутаций - дупликации. Это копирование участка хромосомы, которое происходит вследствие ошибки при так называемом перекресте, или кроссинговере в процессе деления клетки.

Скопированный таким образом участок может сохранять свое положение, поворачиваться на 180°, или даже повторяться несколько раз, и тогда такая мутация называется амплификацией.

У растений количество генетического материала может увеличиваться именно путем многократных дупликаций. В таком случае обычно меняются способности целого вида к адаптации, а это значит, что такие мутации имеют большое эволюционное значение.

Инверсии

Также относятся к внутрихромосомным мутациям. Инверсия - это поворот определенного участка хромосомы на 180°.

Перевернутая в результате инверсии часть хромосомы может находиться по одну сторону от центромеры (парацентрическая инверсия) или по разные ее стороны (перицентрическая). Центромера - это так называемая область первичной перетяжки хромосомы.

Обычно инверсии не оказывают влияния на внешние признаки организма и не приводят к патологиям. Существует, однако, предположение, что у женщин с инверсией определенного участка девятой хромосомы вероятность выкидыша при беременности возрастает на 30 %.

Транслокации

Транслокация - это перемещение участка одной хромосомы на другую. Эти мутации относятся к типу межхромосомных. Выделяют два вида транслокаций.

  1. Реципрокные - это обмен двух хромосом определенными участками.
  2. Робертсоновские - слияние двух хромосом с коротким плечом (акроцентрических). В процессе робертсоновской транслокации короткие участки обеих хромосом утрачиваются.

Реципрокные транслокации приводят у людей к проблемам с деторождением. Иногда такие мутации становятся причиной невынашивания беременности или ведут к появлению на свет детей с врожденными патологиями развития.

Робертсоновские транслокации достаточно часто встречаются у человека. В частности, если транслокация происходит с участием хромосомы 21, у плода развивается синдром Дауна, одна из самых часто регистрируемых врожденных патологий.

Изохромосомы

Изохромосомы - это хромосомы, потерявшие одно плечо, но при этом заменившие его на точную копию другого своего плеча. То есть по сути такой процесс можно считать делецией и инверсией в одном флаконе. В очень редких случаях такие хромосомы имеют две центромеры.

Изохромосомы присутствуют в генотипе женщин, страдающих синдромом Шерешевского - Тернера.

Все описанные выше виды хромосомных мутаций присущи различным живым организмам, в том числе и человеку. Как же они проявляются?

Хромосомные мутации. Примеры

Мутации могут происходить в половых хромосомах и в аутосомах (всех остальных парных хромосомах клетки). Если мутагенез затрагивает половые хромосомы, последствия для организма, как правило, оказываются тяжелыми. Возникают врожденные патологии, которые затрагивают умственное развитие индивида и обычно выражаются в изменениях фенотипа. То есть внешне мутантные организмы отличаются от нормальных.

Геномные и хромосомные мутации чаще возникают у растений. Однако встречаются они и у животных, и у человека. Хромосомные мутации, примеры которых мы рассмотрим ниже, проявляются в возникновении тяжелых наследственных патологий. Это синдром Вольфа-Хиршхорна, синдром «кошачьего крика», болезнь частичной трисомии по короткому плечу хромосомы 9, а также некоторые другие.

Синдром «кошачьего крика»

Это заболевание было открыто в 1963 году. Возникает оно из-за частичной моносомии по короткому плечу хромосомы 5, обусловленной делецией. Один из 45 000 детей рождается с этим синдромом.

Почему это заболевание получило такое название? Дети, страдающие этой болезнью, имеют характерный плач, который напоминает кошачье мяуканье.

При делеции короткого плеча пятой хромосомы могут утрачиваться разные его участки. Клинические проявления заболевания напрямую зависят от того, какие гены были утеряны в ходе этой мутации.

Строение гортани изменяется у всех больных, а значит «кошачий крик» характерен всем без исключения. У большей части страдающих этим синдромом отмечается изменение строения черепа: уменьшение мозгового отдела, лунообразная форма лица. Ушные раковины при синдроме «кошачьего крика» обычно расположены низко. Иногда у больных отмечаются врожденные патологии сердца или других органов. Характерным признаком также становится умственная отсталость.

Обычно больные с этим синдромом умирают в раннем детстве, лишь 10% из них доживает до десятилетнего возраста. Однако зафиксированы и случаи долгожительства при синдроме "кошачьего крика" - до 50 лет.

Синдром Вольфа-Хиршхорна

Этот синдром встречается значительно реже - 1 случай на 100 000 рождений. Обусловлен он делецией одного из сегментов короткого плеча четвертой хромосомы.

Проявления этого заболевания разнообразны: задержка развития физической и психической сферы, микроцефалия, характерная клювовидная форма носа, косоглазие, расщелины неба или верхней губы, маленький рот, пороки внутренних органов.

Как и многие другие хромосомные мутации человека, болезнь Вольфа-Хиршхорна относится к категории полулетальных. Это значит, что жизнеспособность организма при такой болезни существенно снижена. Дети с диагностированным синдромом Вольфа-Хиршхорна обычно не доживают до 1 года, однако зафиксирован один случай, когда больной прожил 26 лет.

Синдром частичной трисомии по короткому плечу хромосомы 9

Возникает это заболевание по причине несбалансированных дупликаций в девятой хромосоме, в результате чего генетического материала в этой хромосоме становится больше. Всего известно более 200 случаев таких мутаций у человека.

Клиническая картина описывается задержкой физического развития, легкой умственной отсталостью, характерным выражением лица. Пороки сердца обнаруживаются у четвертой части всех больных.

При синдроме частичной трисомии короткого плеча хромосомы 9 прогноз все же относительно благоприятный: большая часть больных доживают до пожилого возраста.

Другие синдромы

Иногда даже на очень маленьких участках ДНК происходят хромосомные мутации. Болезни в таких случаях обычно обусловлены дупликациями или делециями, и их называют соответственно микродупликационными или микроделеционными.

Самым распространенным таким синдромом считается болезнь Прадера-Вилли. Возникает она из-за микроделеции участка хромосомы 15. Что интересно, эта хромосома должна быть обязательно получена организмом от отца. В результате микроделеции затронутыми оказываются 12 генов. У больных с этим синдромом отмечаются умственная отсталость, ожирение, а также у них обычно маленькие стопы и кисти рук.

Еще одним примером таких хромосомных болезней может служить синдром Сотоса. Происходит микроделеция на участке длинного плеча хромосомы 5. Клиническая картина этого наследственного заболевания характеризуется быстрым ростом, увеличением в размерах кистей рук и стоп, наличием выпуклого лба, некоторой задержкой психического развития. Частота встречаемости этого синдрома не установлена.

Хромосомные мутации, точнее, микроделеции на участках 13 и 15 хромосом, вызывают соответственно опухоль Вильмса и ретинбластому. Опухоль Вильмса - это рак почек, который возникает преимущественно у детей. Ретинобластома - это злокачественная опухоль сетчатки, которая также встречается у детей. Эти заболевания лечатся, если диагностика их проведена на ранних стадиях. В некоторых случаях врачи прибегают к оеративному вмешательству.

Современная медицина избавляет от многих болезней, но вылечить или хотя бы предотвратить хромосомные мутации пока нельзя. Их можно только выявить в начале внутриутробного развития плода. Однако генная инженерия не стоит на месте. Быть может, в скором времени способ предотвращения болезней, вызываемых хромосомными мутациями, будет найден.

Под хромосомными аберрациями понимают изменения структуры хромосом, вызванные их разрывами, с последующим перераспределением, утратой или удвоением генетического материала. Они отражают различные виды аномалий хромосом.
У человека среди наиболее часто встречающихся хромосомных аберраций, проявляющихся развитием глубокой патологии, выделяют аномалии, касающиеся числа и структуры хромосом. Нарушения числа хромосом могут быть выражены отсутствием одной из пары гомологичных хромосом (моносомия ) или появлением добавочной, третьей, хромосомы (трисомия ). Общее количество хромосом в кариотипе в этих случаях отличается от модального числа и равняется 45 или 47. Полиплоидия и анеуплоидия имеют меньшее значение для развития хромосомных синдромов. К нарушениям структуры хромосом при общем нормальном их числе в кариотипе относят различные типы их «поломки»:
-транслокацию (обмен сегментами между двумя негомологичными хромосомами)-на рисунке транслокация между 8-й и 11-й хромосомами (и моносомия по 15-й хромосоме),

-делецию (выпадение части хромосомы), на рисунке делеция части длинного плеча 9-й хромосомы (и транслокация по 1-й и 3-й хромосомам)

-фрагментаци ю ,
-кольцевые хромосомы и т. д.- на рисунке кольцевая хромосома 14 (обозначена r14) и ее нормальный вариант.

Хромосомные аберрации, нарушая баланс наследственных факторов, являются причиной многообразных отклонений в строении и жизнедеятельности организма, проявляющихся в так называемых хромосомных болезнях.

Хромосомные аберрации- это поломки хромосом, когда по каким-то причинам исчезает или добавляется большая часть хромосомы и/или изменяется нормальное число хромосом.

Методы определения

Для того, чтобы выявить наличие у человека хромосомных аберраций, проводят кариотипирование - процедуру определения кариотипа. Ее проводят на клетках, которые находятся в метафазе митоза, т.к. они спирализованы и хорошо видны. Для определения человеческого кариотипа используются одноядерные лейкоциты, извлечённые из пробы крови. Полученные клетки в стадии метафазы фиксируются, окрашиваются и фотографируются под микроскопом; из набора получившихся фотографий формируются т. н. систематизированный кариотип - нумерованный набор пар гомологичных хромосом (аутосом), изображения хромосом при этом ориентируются вертикально короткими плечами вверх, их нумерация производится в порядке убывания размеров, пара половых хромосом помещается в конец набора.

Исторически первые недетализованные кариотипы, позволявшие проводить классификацию по морфологии хромосом получались аллельные варианты генов). Первый метод окраски хромосом, позволяющий получить такие высокодетализированные изображения, был разработан шведским цитологом Касперссоном (Q-окрашивание). Используются и другие красители, такие методики получили общее название дифференциального окрашивания хромосом:
-Q-окрашивание - окрашивание по Касперссону акрихин-ипритом с исследованием под флуоресцентным микроскопом. Чаще всего применяется для исследования Y-хромосом (быстрое определения генетического пола, выявление транслокаций между X- и Y-хромосомами или между Y-хромосомой и аутосомами, скрининг мозаицизма с участием Y-хромосом)
-G-окрашивание - модифицированное окрашивание по Романовскому - Гимзе. Чувствительность выше, чем у Q-окрашивания, поэтому используется как стандартный метод цитогенетического анализа. Применяется при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы)
-R-окрашивани е - используется акридиновый оранжевый и подобные красители, при этом окрашиваются участки хромосом, нечувствительные к G-окрашиванию. Используется для выявления деталей гомологичных G- или Q-негативных участков сестринских хроматид или гомологичных хромосом.
-C-окрашивание - применяется для анализа центромерных районов хромосом, содержащих конститутивный гетерохроматин и вариабельной дистальной части Y-хромосомы.
-T-окрашивание - применяют для анализа теломерных районов хромосом.На рисунке хромосомы синие, теломеры- белые.

В последнее время используется методика т. н. спектрального кариотипирования , состоящая в окрашивании хромосом набором флуоресцентных красителей, связывающихся со специфическими областями хромосом (FISH). В результате такого окрашивания гомологичные пары хромосом приобретают идентичные спектральные характеристики, что не только существенно облегчает выявление таких пар, но и облегчает обнаружение межхромосомных транслокаций, то есть перемещений участков между хромосомами - транслоцированные участки имеют спектр, отличающийся от спектра остальной хромосомы.
a-метафазная пластинка

b-раскладка на пары хромосом

Сравнение комплексов поперечных меток в классических кариотипах или участков со специфичными спектральными характеристиками позволяет идентифицировать как гомологичные хромосомы, так и отдельные их участки, что позволяет детально определять хромосомные аберрации - внутри- и межхромосомные перестройки, сопровождающиеся нарушением порядка фрагментов хромосом (делеции, дупликации, инверсии, транслокации). Такой анализ имеет большое значение в медицинской практике, позволяя диагностировать ряд хромосомных заболеваний, вызванных как грубыми нарушениями кариотипов (нарушение числа хромосом), так и нарушением хромосомной структуры или множественностью клеточных кариотипов в организме (мозаицизмом).

Хромосомные болезни


Это группа болезней, в основе развития которых лежат нарушения числа или структуры хромосом, возникающие в гаметах родителей или на ранних стадиях дробления зиготы (оплодотворенной яйцеклетки). История изучения хромосомных болезней берет начало с кинических исследований, проводившихся задолго до описания хромосом человека и открытия хромосомных аномалий. Хромосомные болезни - болезнь Дауна, синдромы: Тернера, Клайнфельтера, Патау, Эдвардса.
Наиболее часто встречающаяся болезнь, трисомия-21 , клинически была описана в 1866 г. английским педиатром Л.Дауном. По его имени и названа эта болезнь - синдром (или болезнь) Дауна. В дальнейшем причина синдрома не раз подвергалась генетическому анализу. Высказывались предположения о доминантной мутации, о врожденной инфекции, о хромосомной природе.

Первое клиническое описание синдрома моносомии по Х-хромосоме как отдельной формы болезни было сделано русским клиницистом Н.А.Шерешевским в 1925 г., в1938 г. Г.Тернер также описал этот синдром. По фамилии этих учёных моносомию по Х-хромосоме называют синдромом Шерешевского-Тернера. В зарубежной литературе в основном используют название синдром Тернера, хотя никто не оспаривает открытие Н.А.Шерешевского. Хромосомные аномалии часто вызывают самопроизвольный аборт, пороки развития, замедление умственного развития и появление опухолей.

Аномалии в системе половых хромосом у мужчин (трисомия-ХХУ) как клинический синдром впервые описал Г.Клайнфелтер в 1942 г.

Перечисленные три формы и явились объектом первых клиникоцитогенетических исследований, проведенных в 1959 г. Расшифровка этиологии синдромов Дауна, Шерешевского-Тернера и Клайнфелтера открыла новую главу в медицине - хромосомные болезни. В 60-х годах благодаря широкому развертыванию цитогенетических исследований в клинике полностью сложилась клиническая цитогенетика. Была показана роль хромосомных и геномных мутаций в патологии человека, расшифрована хромосомная этиология многих синдромов врожденных пороков развития, определена частота хромосомных болезней среди новорожденных и при спонтанных абортах. Наряду с изучением хромосомных болезней как врожденных состояний начались интенсивные цитогенетические исследования в онкологии, особенно при лейкозах. Роль хромосомных изменений в опухолевом росте оказалась очень значимой.

С разработкой метода авторадиографии стала возможной идентификация некоторых индивидуальных хромосом, что способствовало открытию группы болезней, связанных со структурными перестройками хромосом. Интенсивное развитие учения о хромосомных болезнях началось в 70-х годах XX века, после разработки методов дифференциального окрашивания хромосом.

Классификация хромосомных болезней основана на типах мутаций, вовлеченных в них хромосом. Мутации в половых клетках приводят к развитию полных форм заболеваний, при которых все клетки организма имеют одну и ту же хромосомную аномалию.

В настоящие время описано 2 варианта нарушений числа хромосомных наборов - тетраплоидия (4 набора хромосом вместо 2 в норме) и триплоидия (з набора хромосом вместо 2 в норме). Другая группа синдромов обусловлена нарушениями числа отдельных хромосом - трисомиями (когда имеется добавочная хромосома в диплоидном наборе) или моносомия (одна из хромосом отсутствует). Моносомии аутосом несовместимы с жизнью . Трисомии - более часто встречающаяся патология у человека. Ряд хромосомных болезней связан с нарушением числа половых хромосом.

Самая многочисленная группа хромосомных болезней - это синдромы, обусловленные структурными перестройками хромосом. Выделяют хромосомные синдромы так называемых частичных моносомий (увеличение или уменьшение числа отдельных хромосом не на целую хромосому, а на ее часть). В связи с тем, что подавляющая часть хромосомных аномалий относится к категории летальных мутаций для характеристики их количественных параметров используются 2 показателя - частота распространения и частота возникновения .

Выяснено, что около 170 из 1000 эмбрионов и плодов погибают до рождения, из них около 40% - вследствие влияния хромосомных нарушений. Тем не менее значительная часть мутантов (носителей хромосомной аномалии) минует действие внутриутробного отбора. Но некоторые из них погибают в раннем, до достижения пубертантного возраста. Больные с аномалиями половых хромосом из-за нарушений полового развития, как правило, не оставляют потомства. Отсюда следует, что все аномалии можно отнести к мутациям. Показано, что в общем случае хромосомные мутации почти полностью исчезают из популяции через 15 - 17 поколений.

Для всех форм хромосомных болезней общим признаком является множественность нарушений (врожденные пороки развития). Общими проявлениями хромосомных болезней являются : задержка физического и психомоторного развития, умственная отсталость, костно-мышечные аномалии, пороки сердечно - сосудистой, мочеполовой, нервной и др. систем, отклонение в гормональном, биохимическом и иммунологическом статусе и др.

Степень поражения органов при хромосомных болезнях зависит от многих факторов - типа хромосомной аномалии, недостающего или избыточного материала индивидуальной хромосомы, генотипа организма, условий среды, в котором развивается организм.

Этиологическое лечение этого вида болезней в настоящее время не разработано.

Роль в процессе старения

Старение можно определить как увеличивающуюся с возрастом вероятность возникновения дегенеративных болезней (рак, аутоиммунные заболевания, сердечно-сосудистая патология и т.д.) и смерти. Скорость процесса обусловлена как индивидуальной генетической программой, так и факторами окружающей среды, действующими в течение жизни на организм. Много работ было посвящено изучению зависимых от возраста биологических параметров и поиску тех, которые играют ключевую роль в старении и, соответственно, сформулировано много гипотез. Гипотеза, рассматривающая в качестве причины старения спонтанные мутации в соматических клетках, концептуально представляется наиболее логичной. Действительно, ДНК определяет все основные клеточные функции, она чувствительна к действию различных физических и химических факторов, ее изменения передаются дочерним клеткам. Кроме того, эта гипотеза подтверждается рядом клинических и экспериментальных фактов.

Во-первых , у человека существуют наследственные синдромы преждевременного старения, обусловленные различными дефектами репарации ДНК.

Во-вторых , ионизирующие излучения, а также факторы, модифицирующие ДНК, например, 5-бромдезоксиуридин, ускоряют процесс старения экспериментальных животных. При этом молекулярные, цитологические и цитогенетические нарушения при естественном, и индуцированном радиацией старении аналогичны.

В-третьих , имеется определенный параллелизм между отдаленными соматическими, (т.е. возникающими непосредственно у облученных организмов) и генетическими, (т.е. наблюдаемыми у потомства облученных родителей), эффектами радиации. Это - увеличение канцерогенного риска, нестабильность генома, ухудшение общефизиологического статуса. В отличие от самих облученных организмов их потомство свободно от следов непосредственного лучевого воздействия, но так же, как и облученные особи, несёт в своих соматических клетках индуцированные генетические повреждения, переданные через половые клетки родителей.

Наконец , при исследовании различных цитогенетических, мутационных и молекулярно-генетических нарушений в большинстве случаев было установлено, что их частота увеличивается с возрастом. Это касалось хромосомных аберраций, микроядер, анеуплоидий, утраты теломерных повторов, мутаций в гликофориновом локусе, мутаций устойчивости к 6-тиогуанину, разрывов ДНК и др. Структурные аберрации хромосом относятся к тому типу генетических нарушений, которые, несомненно, вносят свой вклад в многофакторный процесс старения. Нестабильные хромосомные аберрации - дицентрики, кольца, фрагменты - приводят к гибели клеток, стабильные - транслокации, инсерции, как известно, сопровождают онкогенез, а также могут влиять на жизненно важные функции клеток.

Показанное в многочисленных исследованиях увеличение частоты структурных мутаций под влиянием различных вредных факторов (радиация, химические соединения) позволяет рассматривать их как одну из возможных причин ухудшения здоровья людей в экологически неблагоприятных условиях . (Воробцова и соавт., 1999)

Синдромы преждевременного старения

Синдромы, включающие преждевременное старение кожи, -это замечательные модели для понимания нормального старения кожи и процесса старения вобщем. Сейчас проводятся разнообразные исследования этих синдромов, в том числе генетические и биохимические. Этим исследованиям посвящена недавняя статья французских ученых Dereure O, Marque M и Guillot B из Монпелье "Синдромы преждевременного старения: от фенотипа к гену" . Сейчас разрабатывается новая классификация этих синдромов, основанная на биохимических механизмах патогенеза:
- синдромы с/без дефектов ламина А (прогерия)
- синдромы, связанные с дефектами репарации (синдром Коккейна)
- синдромы, связанные с хромосомной нестабильностью, чаще всего из-за дефектов хеликазы (синдромы Вернера и Ротмунд-Томсона, атаксия-телеангиэктазия)
Диагностика этих синдромов чаще всего основывается на клинических проявлениях и самые яркие из этих признаков связаны со старением кожи. Ученые считают, что генетические исследования должны вестись более широкомасштабно. Исследование этих синдромов, в том числе и вызванных хромосомными аберрациями, позволит пролить свет на механизмы старения у нормальных людей, т.к. прогерия и подобные ей синдромы в некоторой степени повторяют нормальное старение.

Лейкоз и потеря Y-хромосомы

Ученые под руководством Роны Шрек () и Стефена Ли () из знаменитого лос-анджелеского медицинского центра Cedars-Sinai Medical Center провели исследование явления потери Y-хромосом в лейкозных клетках . В научной среде обсуждаются клиническая ассоциация между потерей Y-хромосомы и острым миелоидным лейкозом и миелодиспластическим синдромом (AML/MDS), потому что оба явления связаны со старением. В более ранних публикациях говорилось о том, что потеря Y-хромосомы в 75% клеток свидетельствует о клональности этого феномена и является маркером гематологического заболевания. Ученые проанализировали результаты обследования 2896 мужчин- пациентов, наблюдавшихся с 1996 по 2007 год. Исследовалась корреляция количества (в процентном соотношении) клеток без Y-хромосомы и возрастом пациентов. Потеря хромосомы была обнаружена у 142 человек. Из них 16 человек с миелоидными заболеваниями, 2 случая AML и 14 случаев MDS. Были сделаны выводы, что потеря Y-хромосомы- это преимущественно возрастассоциированный феномен, который статистически значимо кореллирует со случаями AML/MDS , а значит дефект любой делящейся клетки костного мозга может привести к AML/MDS.

Фагоцитоз клеток с аберрациями-защита от рака?

Мы много говорим о том, что клетки повреждены, т.к. повреждены хромосомы. Но возникает вопрос-реагирует ли организм на поврежденные клетки? Если да, то как? И какое значение имеют подобные процессы? Может быть скоро на эти и другие вопросы будут найдены точные ответы.

Недавно вышла статья молодого ученого Василия Манских, который некоторое время произвел фурор в московских научных кругах . Данная статья называется "Гипотеза: Фагоцитоз аберрантных клеток защищает долгоживущих позвоночных от опухолей" . Возможные механизмы защиты от канцерогенеза и спонтанного образования опухолей долгоживущих позвоночных сейчас обсуждаются научной общественностью. Предполагается, что эти механизмы подразумевают фагоцитоз и элиминацию (т.е. удаление) поврежденных клеток, включающие ДНК-Протеинкиназа-зависмый путь и -зависимый путь, а также лиганды для Scavenger-рецепторов и Toll-подобных рецепторов. Экспериментальное подтверждение этой гипотезы находится в стадии разработки.

Анеуплоидия в лейкоцитах долгожителей

Сейчас уже практически не вызывает сомнение, что с возрастом увеличивается количество клеток с хромосомными аберрациями. Проблема анеуплоидии у долгожителей (старше 80 лет) стала темой исследования грузинских ученых во главе с Лежава. Они количественно анализировали хромосомные перестройки и соотношение между "индуцированной" и "естественной" анеуплоидией у людей от 80 до 114 лет с помощью кариотипирования. Изучалось 1136 кариотипов из 40 лимфоцитарных культур, вырощенных из лимфоцитов 40 доноров (26 мужчин и 14 женщин). 964 кариотипа из 48 здоровых доноров от 20 до 48 лет использовались в качестве контроля. Исследования показали, что естественная анеуплоидия чаще встречается у женщин, а индуцированная-у мужчин. Вопрос естественной анеуплоидии у мужчин остался неясным. Остается надееться, что ученые продолжат работу в этом интересном направлении.

Ступени на пути к раку

Одно из недавних исследований с использованием секвенирования кроме всего прочего показала наличие 1700 немолчащих мутаций в генах, приводящих к раку груди или колоректальному раку, и это всего в 11 образцах рака груди и 11 образцах колоректального рака. Это доказало, что геномная нестабильность- признак раковых клеток . Изучением этой проблемой занимаются многие ученые по всему миру, в том числе Рейнхард Штиндль (Reinhard Stindl) из Департамента Молекулярной и Клеточной биологии Университета Беркли , чему посвящена его статья "Ступени на пути к раку" .
Многообразие геномных изменений не подчиняется закону "корелляции генотипа и фенотипа", т.к. разные образцы опухолей, относящихся к одному и тому же гистологическому типу, демонстрируют разные мутации и хромосомные аберрации у каждого пациента. Штиндль предлагает каскадную модель канцерогенеза . Рассмотрим ее.
1) Регенерация ткани зависит от пролиферации и последовательной активации стволовых клеток. Репликативная эрозия теломер (т.е. их укорочение с каждым делением) ограничивает продолжительность жизни взрослых и проявляется в (M1).
2) Кроме того, локальное истощение ткани или пожилой возраст может вызывать активацию М1- дефектных стволовых клеток.
3) Растянутая во времени пролиферация этих клеток приводит к геномной нестабильности и хромосомным аберрациям (анеуплоидии).
Некоторые из вышеописанных этапов уже были описаны в литературе. Но в отличие от общих теорий, эта теория предлагает объяснение тому, как повреждение генома проявляется на эпигенетическом уровне. В результате анеуплоидии многие гены не могут быть активированы модификацией паттерна (образа) метилирования. Поэтому, фенотип раковой ткани детерминируется эпигенетическим "арестом" стволовых клеток ткани, что дает им возможность пролифирировать, осуществлять инвазию и метастазирование . Эта новая модель сочетает генетические и эпигенетические факторы в некий каскад, давая объяснение многообразию повреждений генома, обнаруживаемых в раковых клетках.

В заключение

Как мы выяснили, изучив материал о хромосомных аберрациях, на данный момент несомненно одно- хромосомные аберрации (т.е. нестабильность генома) приводят к старению и возраст-ассоциированным заболеваниям . Но хромосомные аберрации являются и точным признаком стареющих клеток и организмов, так что вопрос о том, что первично-старение или аберрации-остается открытым. Хотя для возраст-зависимых заболеваний определено, что их причиной может быть геномная нестабильность.
Тема эта безусловно интересна и важна для поиска лекарства от старения. Кроме того, существует "природная модель" взаимосвязи хромосомных аберраций и старения- дети с прогерией. Наблюдение и изучение этих малышей позволит не только найти лекарства от их страшных болезней, но и лекарства от старения, т.к. прогерия и подобные ей заболевания, как отмечалось выше, являются в некотром приближении моделями естественного старения.
Другим направлением может быть исследование долгожителей, аналогичное работе грузинских ученых, о которой мы говорили выше. Но работа эта должна быть глубокой, в ней должны участвовать ученые со всего мира и исследоваться должны представители не одной популяции, а многих. Важным будет и сравнение результатов между популяциями, и комплексный анализ генетических и эпигенетических аспектов геномной нестабильности.
Эти исследования обязательно помогут в борьбе со старением, а также дадут надежду тысячам больным онкологическими заболеваниями, являющимися результатом хромосомных аберраций.

Вчера мы с мужем смотрели одну из серий сериала «Женский доктор», где была история о матери, вынашивающей двойню, где у мальчика подозревался синдром Дауна. Мой муж стал подробно меня расспрашивать – откуда такое берется и почему вообще возникают хромосомные болезни у детей, если их родители вполне здоровы и проблем в семье нет?

Вопрос правильный, серьезный и очень сложный, ответить на него тяжело, ведь медицина, увы, до конца не знает, почему же в хромосомах происходит поломка. Но проблема это существующая, реальная и многие женщины очень переживают во время беременности, когда врач говорит им пройти тест-скриннинг на подобные анализы. Давайте поговорим об этом подробно.

Почему возникают и как это происходит?

Поломки генов и хромосом – это серьезные нарушения организма, так как гены отвечают за развитие организма, его полноценную работу и различного рода заболевания. Еще в школе вы изучали основы генетики и в общих чертах имеете представление о том, что происходит внутри клеток. В ядре каждой из клеток тела содержится информация о ее жизненной программе и функциях. Плотно упакованная в 46 хромосом. У всех клеток тела имеется двойной (четный набор хромосом), а вот у половых клеток этот набор половинный.

То есть яйцеклетка или сперматозоид человека имеют всего 23 хромосомы. Поэтому, от папы и мамы каждый человек получает половинный набор хромосом и соответственно признаков. Поэтому и похожи мы на обоих родителей. Но, гены в этих хромосомах работают не все, одни из них включаются в работу сразу, другие по мере роста и развития, третьи – на этапе старения и т.д. Какие гены и какие участки хромосом полученных от родителей будут рабочими и нерабочими – это спрогнозировать может только мать-природа, мы этого знать не можем, по крайней мере пока…

Иногда возникают поломки в хромосомном наборе, могут быть дефекты на уровне одного гена, на уровне группы генов – тогда чаще возникают не пороки развития, а наследственные болезни и синдромы, например, фенилкетонурия. Иногда могут страдать целые участки хромосом (так называемые плечи хромосом), которые могут отрываться, менять свое место и т.д.
Могут возникать потери или удвоения некоторых хромосом в одной из пар, и человек рождается с другим набором хромосом – чаще всего это бывает трисомия (вместо двух хромосом три) по одной из пар хромосом, как например при синдроме Дауна (трисомия по 21 паре хромосом), синдроме Эдвардса (по 18 паре хромосом) или синдроме Патау (по 13 паре хромосом).

Это может происходить в результате нарушения процесса деления и снижения контроля за ним со стороны организма. То есть в результате деления клетки (будь то половая клетка или клетка зародыша). Все хромосомы в паре по серединке завязаны своего рода мостиком или веревочкой, в процессе деления этот мостик или веревочка должна развязаться и половинки хромосомы – разойтись к разным полюсам клетки. Потом к каждой половинке организм достроит аналогичную зеркальную копию – тогда деление клетки будет равноценным.

Если же в результате деления мостик на развязался, то к одной клетке отойдет два кусочка хромосомы, а к другой – ни одного. Тогда в одной клетке получится одна лишняя хромосома – а в другой ее будет недоставать. Клетки с неполным набором хромосом обычно нежизнеспособны и гибнут, а вот клетки с дополнительным набором – вполне выживают. Если у женщины образуется яйцеклетка с таким дополнительным набором, то при ее оплодотворении она может дать жизнь ребенку с хромосомной аномалией. Пока организм молодой он достаточно жестко и четко контролирует процесс образования таких клеток, хотя контроль все равно не стопроцентный, но вот по мере возраста контроль снижается. Поэтому, врачи говорят о повышении риска рождения ребенка с наследственными и хромосомными аномалиями по мере взросления женщины (и мужчины тоже).

На неправильное неравноценное деление клеток могут влиять и различные факторы внешней среды, и внутреннее состояние организма. Так, при работе женщин и мужчин в условиях вредного производства риски повышаются, равно как и у тех, кто живет в условиях плохой экологии, часто болеет, имеет в роду случаи наследственных болезней и т.д. К сожалению, узнать состояние своих яйцеклеток и сперматозоидов мужчины в плане генетических отклонений невозможно. Может образоваться всего одна из всех 400 яйцеклеток за всю жизнь с дефектом, а может сформироваться один из миллиарда дефектных спермиев. Просчитать это невозможно. Но фактор риска в виде возраста – это реальность, но не приговор!

Виды хромосомных синдромов.

Не буду утомлять вас долгими лекциями по генетике и молекулярным технологиям, обрисуем возможные аномалии в общем плане, какие могут возникать. Всего известно более двухсот хромосомных синдромов и аномалий, учитывая что у человека 23 пары хромосом в каждой из них. Включая половые хромосомы, возможны различные варианты аномалий. Варианты могут быть различными – полная или неполная (частичная трисомия), делеция хромосомы, моносомия хромосомной пары, мозаичная транслокация, генные дефекты и т.д. Каждый из видов более или менее благоприятен в плане прогноза для жизни и здоровья.

Самым прогностически благоприятным синдромом в плане хромосомных аномалий являются так называемые сбалансированные транслокации – это обмен участками аналогичных хромосом между собой. У таких людей внешность и работа организма ничем не отличаются от обычного человека, особенности их генетики можно выявить только при специальном исследовании. Но у таких людей резко повышен уровень рождения ребенка с генетическими отклонениями. Так как они сами носители патологических хромосом. У таких родителей риск рождения малышей с аномалиями повышается до 50%, от 5% при обычных условиях.

Другим вариантом хромосомных нарушений является мозаичные трисомии или делеции хромосом. Это наличие таких клеток не во всех органах и тканях, и чем больше тканей с дефектами, тем хуже прогноз для жизни и здоровья, в плане формирования пороков развития. Самым тяжелым вариантом являются полные трисомии (по одной паре во всех клетках по три хромосомы) или моносомии (во всех клетках по одной паре всего одна хромосома). При таких дефектах большинство беременностей завершается прерыванием беременности в ранних сроках за счет срабатывания механизма естественного отбора природой.

Если же плод развивается до 20-22 недель, зачастую возникают тяжелые патологии беременности с невынашиванием, угрозами выкидыша, повышением тонуса матки, старением плаценты преждевременно, гипоксией и токсикозами. Могут быть и варианты развития беременности до срока и далее прогноз для ребенка будет зависеть от степени выраженности тех или иных отклонений, в среднем продолжительность жизни у людей с хромосомной патологией около 30 лет. Состояние здоровья и уровень интеллекта таких людей зависит от степени и глубины поломки, многие из детей вполне нормально живут и развиваются, могут сами себя обслуживать. Выполняют вполне посильную работу и общаются со сверстниками. Сказать во время беременности насколько проблемным будет будущий ребенок очень сложно, многое зависит от уровня поражения генетического материала.

Как провести исследование?

Многие будущие родители задают вопрос, можно ли еще заранее в ранние сроки узнать, есть ли у ребенка хромосомные патологии и какие? Сегодня медицина делает попытки раннего выявления подобных нарушений, чтобы родители совместно с врачами могли принять решение – продолжать ли развитие беременности или лучше ее прервать. Есть определенный набор критериев, по которым можно заподозрить (но не со стопроцентной вероятностью определить) наличие генетических и хромосомных заболеваний. К ним можно отнести угрозу выкидыша на ранних сроках и в дальнейшем на фоне всей беременности постоянные тянущие боли в животе. Это симптом неспецифический. Угроза прерывания беременности бывает и при абсолютно нормальном плоде, факторов ее возникновения очень много, одного только этого факта совершенно не достаточно для подозрений.

Дополнительными поводами для подозрений могут стать следующие показатели:

Увеличение толщины шейной складки у плода по данным УЗИ на сроке в 12 недель беременности,
- низкая двигательная активность плода и недостаточное количество шевелений,
- низкие уровни альфа-фетопротерина и РАРР-А, на фоне повышения уровня хорионического гонадотропина при сроках в 12-14 недель беременности,
- отставание в росте косточек на сроках от 20-22 недель и увеличение с этого же срока почечных лоханок плода,
- недоразвитие и раннее старение плаценты,
- признаки гипоксии плода, неудовлетворительные данные по доплерометрии и КТГ.
- проявления многоводия или маловодия.

Однако, все эти признаки не являются стопроцентным доказательством того, что с ребенком проблемы, точно это можно узнать только при проведении инвазивных методов исследования. Это биопсия хориона (зачаток плаценты), а также анализ амниотической жидкости и забор пуповинной крови для обследования и выявления генотипа плода.
Завтра мы поговорим об обследовании при подозрении на синдром Дауна, как наиболее распространенный порок хромосом.

Методы диагностики синдрома Дауна при беременности.